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The complex dynamic concepts of mechanical systems are regarded each day as new

barriers to be overcome. One of the most complex systems, despite its common

basis due to its complexities. This paper intends to propose a new approach to the

characterization of the elastohydrodynamic lubricated point contacts on such

components, in order to fully depict its non-linear dynamic behavior, avoiding the

use of rough hypothesis on a systemic procedure. A multi-level method was used to

solve the coupled lubrication–deformation problem, alongside a Newmark-ß integrator

of the motion equation for the contact system. A range of dynamically similar contacts

were evaluated, so as to characterize its nonlinear dynamic behavior. A least-squares

method was applied to the multi-level algorithm results, fitting the displacements–

force relation to a linear and also to a third order polynomial stiffness. The fitting results

were compared, clearly showing the nonlinear behavior of such contacts. Also, the oil

film damping was regarded as viscous, leading to good overall response. Some

peculiarities of the proposed adjust method are also considered.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The time reduction between product updates and new developments in the mechanical industries brings new
challenges to the development team. Old assumptions and rough concepts can mislead the project and increase the
number of practical experiments needed. Working with prototypes or finished products experimentally is a great
engineering tool to understand systemic behavior. Also, methods like DOE and accelerated testing can decrease the total
experimentation phase time. However, the only way to overcome the time issue is to reduce the chances of a prototype go
wrong. Using the right simulation tools and methods, the development group can provide better parts, or in some cases,
even finished parts, without extensive bench tests ever occur. So, the need for better mechanical models is the first to arise.

Dealing with complex dynamic systems is a common procedure in the industries nowadays. For those cases, even now,
some rough modeling hypotheses are used, and the problem itself is not very well represented. That is the case of rolling
element bearings.

That kind of machine element usually has failure issues related to vibration and noise, which arise from problems such
as pitting and spalling. Those events are directly related to the contact forces acting between components and the
associated contact fatigue. Thus, it is essential to understand those conditions in order to increase bearing life and quality.
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Nomenclature

a contact ellipse minor semi-axis [m]
Ah harmonic excitation amplitude
B4 mixed dynamic coefficient
Ci damping coefficient of the ith order
E second order elliptic integral
fd dynamic contact force
H(X, Y) dimensionless film thickness
Hc dimensionless central film thickness
Hmin dimensionless minimal film thickness
H0 dimensionless mutual approach
Ki stiffness coefficient of the ith order
K first order elliptic integral
L Moes dimensionless parameter
m rolling element mass [g]
M Moes dimensionless parameter
pn Hertz contact pressure [Pa]
P dimensionless pressure
R curvature sum [1/m]

RX curvature sum in the X direction [1/m]
RY curvature sum in the Y direction [1/m]
ev fitting residual for n variable
S dimensionless geometric parameter
T dimensionless time
u principal variable of the mechanical system,

position
_u velocity of the mechanical system
€u acceleration of the mechanical system
um sum of surfaces velocities [m/s]
X dimensionless longitudinal direction
Y dimensionless transversal direction
Z0 viscosity at amb. pressure [N s/m2]
Z viscosity ratio
k contact elliptic ratio
lZ dimensionless Reynolds equation parameter
v Poisson’s ratio
r density ratio
On dimensionless natural frequency
Oe dimensionless excitation frequency
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The rolling elements bearings, due to its periodical geometrical nature, are a vibration source themselves. In order to
fully understand the complexities of the dynamic behavior of rolling elements bearings, its basic functional characteristics
must be studied, the mechanical contacts linking its elements and the raceways. Those contacts are the only vibration
transmission points between the shaft inside the bearing and bearing housing.

The first studies on the properties of these contacts were made by H. R. Hertz and published on the work ‘‘Über die
Berührung fester elasticher Körper’’. Due to this work, the general contact mechanics of elastic bodies was named after
Hertz. Directly from his work, the nonlinear behavior of the contact can be attained.

The direct use of the dry contact stiffness, as presented in [1], can be a useful approximation to the dynamics of the full
bearing, but, doing so, the lubricant effects are neglected. Since the first studies on the lubrication of highly loaded
contacts, the damping and stiffness of the oil film are known to be effective over the contact. Due to the influence of the
elastic deformation on the oil film thickness this type of lubrication was entitled Elastohydrodynamic (EHL).

The first satisfactory numerical results for the point EHL contact were presented by Hamrock in [2]. In his work, a finite
difference method was used for the steady state lubricated problem, using a Gauss-Seidel iterative method. But there was
not until great improvement on the computational power and the use of advanced methods that the transient EHL contact
could be analyzed.

In the 80s and 90s there were multiple successful attempts to introduce a robust numerical method to evaluate the EHL
static condition. Evans and Snidle [3,4] proposed a quasi-inverse method to solve heavily loaded point contacts, as the
previous Gauss-Seidel iterative schemes were not sufficiently robust for that matter. The method was based on the inverse
solution employed by Dowson and Higgins for the line contact problem.

Also the substitution of the Gauss-Seidel iterative scheme by a Newton–Raphson method was investigated by Park and
Kim [5] to overcome the high computational costs of such procedure. However, even with the low dependence of the
convergence on the relaxation factors, the Newthon–Raphson method is highly dependent on the initial guess; in this case,
of the pressure and thickness distributions.

In 1991, Venner introduced the multi-level method for the EHL point contact, using the multi-level multi-integration,
MLMI, to evaluate the elastic deformation due to the high contact pressure (Venner and Ludbrecht, [6]).

Based on a set of meshes with different grid sizes, this method can greatly reduce computational time by operating the
different error frequencies components on different discretization grids. The multiple grid approach reduces dramatically
the computational costs and to overcome the high load convergence problem, a hybrid relaxation method is used, adding
the Jacobi relaxation method to evaluate high pressure zones. Anyhow, a finite difference method is used to evaluate the
Reynolds equation on those grids.

Most of the developments on the transient EHL contacts afterwards were in the surface discontinuities field. In [7] and
[8], the effect of surface topology was evaluated as a moving transverse ridge through the contact or as waviness of the
surface.

Using this improved method, Wijnant first demonstrate the transient contact response due to harmonic excitation and
free vibration in [9]. In his work, the influence of the transient response is observed over the film thickness and most of all
the first linear fit of the dynamic response is introduced, achieving the first simulated values for the oil damping on EHL
contacts.
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Using these fitted values of damping and stiffness coefficients, Wensing [10] observed the influence of the rolling
element bearing on a simple rotor system. Also in Wijnant and Wesing [11], some comments on the contact dynamics can
be found. Some improvements on the transient EHL algorithm were also proposed by Goodyer [12], focused on an
algorithm optimization and studying some surface topology problems. However, no present models for the contact force of
lubricated point contacts is robust enough to be incorporated in a full bearing model, as the use of linear springs can be
misleading and misinterpret some of the oil film behaviors. For instance, the predicted mutual approach has an
asymmetric behavior with respect to the equilibrium position; hence no linear spring can contemplate such peculiarity.

The first attempts to simulate a transient non-linear model of the EHL contacts were made by Nonato and Cavalca [13],
using a least square method to fit the transient response of a circular EHD contact. In this work, the same approach will be
taken to evaluate the transient and harmonic responses of elliptic EHL contacts. Both results will be compared, in order to
fully understand the behavior of the fitting methods. Also, the use of transient and harmonic responses from identical
contacts parameters should give a quite trustful method to verify the EHL dynamic simulations. At the end, both methods
are supposed to have similar behavior and shall dynamically describe the predicted lubricant film behavior.

A trustful EHL contact dynamic force model is a significant step on having the full rolling element bearing model,
regarding the lubricant forces equilibrium. Consequently, the bearing model could be validated against real rolling element
bearings on a straightforward Jeffcot rotor test bench, as the validation of such transient contacts are of great complexity.
Therefore, this first-hand methodology complies with the necessities for a robust contact model applied to the full bearing
dynamic system, avoiding any misleading interpretation of the predicted film, due to a direct linearization of the contact.

The main objective of this paper is to introduce a more reliable lubricated contact force model, based on the predicted
film behavior of the EHL transient multi-level algorithm. Hereafter, allowing a future validation of the full lubricated rolling
element bearing model on rotor dynamics.

2. EHL dynamic model

A multi-level algorithm as presented in Venner and Ludbrecht [6] and adapted to the transient elliptic load, as in
Wijnant [9], was used to model the dynamic EHL problem. The fluid flow was evaluated using the Reynolds equation for a
gap flow, with the squeeze term. The dimensionless form of the Reynolds equation is shown in Eq. (1).
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Along with the Reynolds equation, the elastic integral has to be solved for the contact strain. The thickness equation
reads

Hðx, yÞ ¼H0þSX2þð1�SÞY2þ
1

Kp

Z1
�1

Z1
�1

PðX0, Y 0ÞdX0dY 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY�Y 0Þ2þk2ðX�X0Þ2

q (3)

where the fourth term on the right hand side is the deformation integral, the second and third terms are the geometrical
approximation for the elliptic body and the first term is the mutual approach of the bodies. Due to the transform integral
nature of this equation, special care must be taken. The MLMI method, as in Venner and Ludbrecht [6], was applied to
evaluate such integral. With respect to the elliptic ratio k, the corrections in both directions must be adjusted
proportionally, when evaluating the discontinuity at Y=Y0 and X=X0.

In opposition to the surface topology evaluations, the principal variable is the mutual approach. This variable represents
the relative movement of two non-deformed points of the contacting bodies, against each other. Thus, the dynamic
behavior of the rolling element against a fixed raceway can be evaluated. The mutual approach, in the static condition, is
obtained from the force balance equation as the integral constant.
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PðX, YÞdX dY ¼ 1 (4)

For the transient case, an equation of motion is needed. So, as presented in Wijnant [9] and reproduced by Goodyer [12],
the inertia term, related to the mass of the rolling element, is introduced in a dimensionless natural frequency approach, as
in Eq. 5.

1

X2
n

d2H0

dT2
þ

3

2p

Z1
�1

Z1
�1

PðX, Y , TÞdX dY ¼ 1 (5)



F. Nonato, K.L. Cavalca / Journal of Sound and Vibration 329 (2010) 4656–4671 4659
where On
2=(8fRE)/(mumK) is the dimensionless natural frequency. Eq. 5 represents the free vibration mode of the system. In

order to solve this second order differential equation two initial conditions must be employed, one in the displacement and
one in the velocity. Physically, introducing a displacement or velocity condition is a hard goal to achieve, as the contacting
bodies are rotating. But numerically, such an approach is the most feasible one.

To avoid the use of non-realistic initial conditions to obtain the transient response, the harmonic excitation can be
applied. As stated by Wijnant [9], the influence of the inertia term tends to be small, due to the 1=X2

n factor. Thus, assuming
a greater influence of the load term, in a harmonic loading condition, the movement equation can be rewritten as in
Wijnant [9]

3

2p

Z1
�1

Z1
�1

PðX, Y , TÞdX dY ¼ 1þAh sin XeTð Þ (6)

where Oe is the excitation frequency and Ah the amplitude. Eq. (6) is applicable mostly in a quasi-static approach, assuming
that the speed of changes in the contact is greater than the speed of the changes in the load, i.e., OnbOe. In other words,
the changes in the oil film stabilize fast enough not to influence the harmonic response.

Also the pressure dependent relations of the fluid properties have to be evaluated with the transient model. The
Dowson and Higgins [14] density–pressure relation and the Roelands equation for the viscosity–pressure relation, as
presented in Larsson [15], were applied.
2.1. Linear dynamic model

Considering the oil film as a set of linear spring and damper, the EHL contacts become a linear dynamic system. Fig. 1
shows this simplified model of the problem, as initially proposed by Wijnant and Wensing [11].

This simple approach is very useful to understand the complete bearing dynamic system. Previously, when dealing only
with the dry contact model, the same situation occurs, only without the damping, provided by the oil film, and the stiffness
being the one from the Hertzian contact model.

In this case, the equation of motion can be rewritten as

1

X2
n

d2H0

dT2
þC1

dH0

dT
þK1H0 ¼ 1 (7)

The contact forces generated at the inner and outer raceways contacts are adjusted to a set of stiffness and damping
coefficients, given by K1 and C1. As seen before, the dimensionless contact force is given by the integral of the pressure over
the contact area. This force, acting on the contacts, is the total force of the contact system, thus it balances both transient
and harmonic movement equations. For the sake of simplicity, the mutual approach H0 will be replaced by u, as the
principal variable. So, for the dimensionless contact force, one might have

K1uþC1 _u ¼
3

2p

Z1
�1

Z1
�1

PðX, Y , TÞdX dY ¼ fd (8)
c2k2 c2k2 c2k2

c1

c2k2
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Fig. 1. Approximated spring and damper linear model.
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In Wijnant [9], the stiffness and damping coefficients of the linear dynamic model were obtained by an implicit method,
as the mutual approach is a function of the applied load. But the relation can be treated only in the dimensional form,
therefore a particular contact characterized only by the dimensionless contact parameters cannot be evaluated without
assuming some physical values.

The damping coefficient is obtained by the integration of the ellipse created by the fd�H0 function. The total amount of
energy absorbed by the fluid film is equal to the area of the ellipse. In this case, the coefficient can easily be found using
only the dimensionless results.

In order to simplify the fitting procedures a least-square method can be used to approximate the evaluated forces to the
dynamic model. Therefore, as in Eq. (8), the difference between the dynamic contact force, fd, and the supposed linear
dynamic model has to be minimized in order to obtain the coefficients. The total force and the values for displacement and
velocity are calculated at each time-step using the EHL dynamic model.

Defining the squared quantity q2 as the difference between fd and the hypothetical linear system, at each simulated
time-step, w, one might have

q2 ¼
XN

w ¼ 0

ððfdÞw�K1uw�C1 _uwÞ
2 (9)

Minimizing the relation for K1 and C1, the following linear system can be achieved
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Wijnant [9] used the harmonic vibration equation instead of the motion equation in order to obtain the dynamic
coefficients. So as to compare the techniques, the least square method can also be applied to the harmonic equation. There
is no need to rearrange the equations, as the same dynamic force has to be adjusted.

The least-square fitting method for the lubricant forces is commonly used in experimental methods for hydrodynamic
bearings, as presented in Zhao [16], Zhou [17] and Castro [18]. However, the nonlinear form is commonly used, as the
linear coefficients are acquired by other methods. The next section we introduce the nonlinear fitting process to the EHL
case.

2.2. Nonlinear dynamic model

In the same way that the dynamic force in Eq. (8) can be adjusted to a linear spring and damper model, it can be
adjusted to a nonlinear model, as proposed by Zhao [16] and Zhou [17] for the hydrodynamic lubricant film. In this case,
only one direction is considered, i.e., the only possible motion is normal to the contact plane. Thus, the dynamic force is
written as

fd ¼ K1uþC1 _uþK2u2þC2 _u
2
þK3u3þC3 _u

3
þB4u _u (11)

where B4 is the mixed dynamic coefficient, depending on both velocity and displacement. Likewise, a linear system can be
found minimizing the relation. The linear system is presented in Eq. (12).
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Solving the linear system leads to a solution vector with all dynamic coefficients. As seen in Eqs. (10) and (12), the
system is symmetrical and can be easily evaluated by a straightforward computational method.

3. Numerical simulation

Along with the finite difference multi-level method for the evaluation of the Reynolds equation, a hybrid relaxation
method was used as presented in Venner and Ludbrecht [6]. Both Gauss-Seidel and Jacobi models were used for the
discretization of the problem. Even though the mesh dependent relaxation triggering value proposed, for choosing
between models, produced fine values, making this a fixed value improves convergence on finer grids, as shown in Nonato
[19].

The need for two relaxation procedures comes from the dual behavior of the problem. As can be seen in Eq. (1), when
the pressure is high, i.e., inside the contact area, the viscosity ratio becomes extremely high and the equation is governed
mostly by the advection operator. On the other hand, when the pressure is low, the Pouisseuille terms are more effective
over the oil film flow.

As given in Wijnant [9], the dimensionless natural frequency of the EHL contact is related to the one in the dry hertzian
contact. In that case, the period of oscillation is given by Tn=5.13/On, so the values for the constant On was chosen to be 0.5,
1 and 2 times the dry contact frequency of 5.13, for most of the simulations. For the harmonic excitations, a Oe=n p relation
was used, being n equal to 1.0, 2.0 and 4.0. The Ah exciting amplitude can be selected as a small percentage of the mean
force, here to be 10%.

In order to characterize the EHL contact, the dimensionless parameters M and L introduced by Moes [20] were used.
They are related to the imposed load and the lubricant parameters, respectively. Also is necessary to specify the elliptic
ratio of the contact. As shown in Wijnant [9], as well as in Nonato [19], the effect of the elliptic ratio tends to decouple both
directions in the Reynolds and thickness equations, leading to a result similar to one of lower load cases. In this paper,
k=0.5 was chosen to represent a mean value of an elliptic ratio.

The motion equation was evaluated using a Newmark-ß method. As the pressure is fully dependent on the integrated
variable H0, the discrete equation has to be analyzed during the relaxation of the Reynolds equation.

Both numerical verification and model validation were made based on previous results present on the vast EHL
bibliography. The first direct verification of the multi-level model took into account the values of mutual approach
presented by Wijnant [9]. Fig. 2 shows the simulated values of the mutual approach, along with the prediction functions,
depicted with lines, from Wijnant [9]. The results are sufficiently close to the fitted prediction functions of Wijnant, as they
are just a numerical fit to the actual simulation results. Therefore, both algorithms present the same results for the
evaluated range of M and L.

In order to further validate the numerical model, the results obtained for a specific condition can be checked against
previous experimental results. The same approach as in Wijnat [9] was used. A setup of a steel ball running against a glass
disc with a thin Cr layer was used to simulate experimentally a lubricated contact. By means of the interference of the
reflected beams from the Cr layer on the ones from the steel ball, a microscope can capture a fringe pattern arising from
the light focused on the contact. Each of these fringes represents a level of more or less the same film thickness; therefore
the shape of the oil film can be depicted. This procedure is commonly known as an interferometry analysis and it is the
current, most common method to evaluate the thin EHL film between two surfaces. For more information on the
interferometry procedures and methods, please refer to Wijnant [9] and Ren [21] and Chaomleffel [22].

Based on the experimental results present in Wijnant [9], the algorithm used to model the EHL contacts was validated.
Firstly, the steady state contact was evaluated. The contact parameters are M=58.07, L=4.62 and On=2.4. As the steel ball is
pressed against a flat surface, the contact area is a circle, therefore k=1.0. In this case, the basic algorithm is unaltered and
Fig. 2. Fitted mutual approach, H0, as a function of M and L=20(– � –), L=15 (– –) and L=0 (—).



Fig. 3. Experimental interferograms obtained for, 0.0rtr4.0 ms (Wijnant [9]).
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the results can be directly compared. The measured minimum and central film thickness were h�m ¼ 0:15 and h�c ¼ 0:34mm.
The calculated central film thickness, hc=0.329 mm differs only 3% from the measured thickness; however, the minimum
film thickness, hc=0.187 mm differs approximately 20% from the measured one. Both results match the ones found by
Wijnant [9].

For the transient case, however, the actual loading condition on the experiment should be modeled. Hence, some
modifications to the algorithm must be made. The static loading condition is replaced by a ramp loading, which emulates
the sudden impact loading imposed to the experimental test rig in order to excite the free vibration of the contact. Here,
the dimensionless load increases linearly from 1.0 to 3.67 in a dimensionless time frame of 1.69. Fig. 3 shows the
experimental interferograms for 0.0 to 4.0 ms reproduced from Wijnant [9]. The same time frames were obtained using the
present algorithm. Fig. 4 depicts the pseudo-interferograms for the ramp load.

The correlation between both simulation and experimental data shows a fair agreement, as found by Wijnant [9].
However, as also stated by Wijnant [9], it is extremely difficult to investigate the influence of individual EHL contacts from
measurements on full bearings. Hence, deriving a trustful theoretical model and subsequently incorporating these models
in a full bearing dynamic enables to study its vibration behavior and noise effects. Such influence of the full bearing
dynamic model over the system can be assessed on a coupled bearing rotor non-linear model as presented by Chang-Jian
and Chen [23] for hydrodynamic bearings.
4. Dynamic results

Using the algorithm presented in Nonato [19], the EHL transient contacts were evaluated in order to obtain the contact
displacement and velocity for a given period of time. Firstly, the free vibration model was evaluated for a particular case,
with two different dimensionless natural frequencies On (2.56 and 5.13). The displacement results for the simulated
examples are presented in Fig. 5.

The overall behavior of the responses was adequate, and also the film damping effect can be clearly observed in curves.
At a first glance, the EHL contact system behaves basically as a linear stiffness and viscous damping mechanical 1 DOF
system. But some care must be taken, as the basic contact model used for both the dry and the lubricated contact are
basically non-linear. Deeper evaluation of these responses is made latter in this work.



Fig. 4. Calculated pseudo-interferograms for ,0.0rtr4.0 ms, i.e., dimensionless 0.0rTr5.6.

Fig. 5. Transient mutual approach response for EHL elliptic contact with M=200 and L=10 for two different natural frequencies, On=513 (– –) and

On=256 (—).
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Other common characteristic of the dynamic EHL contact is the wave propagation arising from the advection term on
the Reynolds equation. In other words, any disturbance of the film thickness induced at any point propagates with the
velocity of the film across the contact area. This can be observed in Fig. 6, where both the minimum film thickness and the
central film thickness are plotted for the On=513 case.

An important characteristic for the central film thickness is that, initially, its value remains constant. Close to one
dimensionless time unit, referred here as T, the first valley occurs. Therefore, with a constant dimensionless velocity of 1,
the wave is propagated from the inlet side, or left side in this case, through the contact area. In order to fully comprehend
this behavior and verify the algorithm, pseudo-interferometry graphics of the film thickness were obtained. Fig. 7 shows
clearly a wave propagating, from the inlet region, across the contact area. Similar results are found in [9].

Having achieved a good transient response for the EHL contact algorithm, the mutual approach variable H0 is now
treated as the principal direction of the dynamic contact system. Therefore Eq. (7) is applicable to this case. It is important



Fig. 7. Pseudo-interferometry fringes for the EHL contact of Fig. 3, starting at T=0.0 with DT=0.25 between pictures.

Table 1
Fitted coefficient values for three different natural frequency cases.

Case M L k On K1 C1 ef e €u

1 200 10 0.5 10.26 1.1521 0.01037 1.1623E-03 6.2361E-01

2 200 10 0.5 5.13 1.1519 0.01238 7.0616E-04 9.2056E-01

3 200 10 0.5 2.56 1.1507 0.01034 2.5072E-04 6.1221E-01

Fig. 6. Transient minimal, Hm(—), and central, Hc(– –), film thickness for M=200, L=10 and On=513.
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to note that the value for the mutual approach differs from the minimal or the central film thickness, being a constant
value across all contact area and a good way to evaluate the system’s dynamic.

At first the two cases presented in Fig. 5 were evaluated. The fitting procedure took place using the least-squares
method outlined before, where the mutual approach is handled as the displacement on Eq. (7) and the velocities attained
from the dynamic EHL algorithm. Also, in order to evaluate the linear system given in Eq. (10), at each integration step
there should be an integration of the pressure field over the domain, to obtain the EHL dynamic force. The results from the
linear fit are listed in Table 1.
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Also in Table 1, a measure of the error on the fitting process had to be introduced with the aim of performance control.
For these cases, a point-wise difference method was employed. For every discrete point, its difference towards the valued
to be fitted is summed, producing an overall error value for the fitted interval. Eq. (13) shows the general fitting error
expression used.

ev ¼

P
i vi�v�iP

i vi
(13)

where v denotes the evaluated variable and vn the fitted values for such variable. Further on, it will be seen that just one
global error for the mutual approach is not enough to represent the fitting procedure. Despite the low error values for the
least square method and the rather good constancy on the fitting of the coefficients, the plotted curves showed some
deviation from the original results.

For all three cases, an amplitude deviation can be noticed on the force adjustment. Fig. 8 shows exactly this effect.
Moreover using the fitted coefficient values to obtain the acceleration of the system by isolating €u ¼ d2H0=dT2 from Eq. (7),
another fitting precision measurement can be done. However, the same amplitude problem is observed.

Despite previous results in this area, the linear dynamic model for the EHL contact seams not to fully represent the EHL
contact behavior. Even though, it is a fairly good approximation to the system. However, in order to overcome this
problem, a non-linear dynamic model as given before can be used. By means of Eq. (11), there are now seven dynamic
coefficients to be adjusted to the force curve. Most of these coefficients have no physical meaning, whatsoever.
Nevertheless, they represent a unique stiffness and damping polynomial, with a specific behavior.

Still, even without tangible meaning, these polynomials have to represent equally the behavior of a given system, thus
having no modifications of its results when, for instance, the suspended mass is increased, but Moes’ parameters are
maintained constant. In other words, even with a change in the boundary conditions, the EHL system dynamic
characteristics have to be regarded as unchanged. Therefore, the same system, as given in Table 1, (M=200, L=10 and
k=0.5), with three different natural frequencies, i.e., three different suspended masses, was evaluated by means of the
nonlinear system of Eq. (12).

A sensitivity analysis was made, in order to reduce the total number of dynamic coefficients, decreasing the fitted
polynomial complexity, as in Nonato [19]. The sensitivity analysis was carried on removing one coefficient at a time from
the nonlinear system; and the residuals from the fitting procedure compared as in Table 2. As it can be observed, using only
the linear damping coefficient, i.e., a viscous damper is enough to represent the damping due to the oil film. However, the
stiffness is not enough represented when using less than three coefficients. Therefore, the stiffness is a third order
polynomial.

Hence, using coefficients K1, K2 and K3 for the stiffness and C1 for the damping, the EHL dynamic contact is fully
represented by a nonlinear spring and a viscous damping model. The new dynamic coefficients are listed in Table 3.
Fig. 8. Simulated (—) and fitted results (�) for the (a) EHL dynamic force, fd, and (b) system acceleration, €u , using the linear dynamic model for case 2.

Table 2
Residuals from the sensitivity analysis.

Coef. All �K1 �C1 �K2 �C2 �K3 �C3 �B4

ef 4.059E-08 3.197E-05 4.417E-08 6.803E-07 5.978E-08 1.921E-06 4.379E-08 4.602E-08

e €u 2.711E-05 1.621E-02 2.956E-05 4.490E-04 3.806E-05 1.218E-03 2.937E-05 3.121E-05



Table 3
Fitted non-linear coefficients values and fitting residuals for three different natural frequency cases, with M=200, L=10 and k=0.5.

Case On K1 K2 K3 C1 ef e €u

1 10.26 1.552 �1.414 1.093 0.011 �9.987E-10 2.255E-06

2 5.13 0.806 0.346 0.054 0.013 1.094E-08 �1.253E-05

3 2.56 0.747 0.502 �0.046 0.015 8.897E-09 1.830E-04

Fig. 9. Simulated (—) and fitted results (�) for the (a) EHL dynamic force, fd, and (b) system acceleration, €u , using the non-linear dynamic model for case 2.

Fig. 10. Simulated (—) and fitted results (�) for the EHL contact mutual approach for (a) case 2 and (b) case 3, using the non-linear dynamic model.
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With this nonlinear dynamic system, the EHL dynamic contact should have a better cohesion between the simulated
and fitted data graphics. In Fig. 9, the same cases shown in Fig. 8 are represented using the new nonlinear approach. As
anticipated by the lower residuals found, both curves have almost the same behavior, without the amplitude errors as seen
before.

The adjustment level of the nonlinear system to the dynamic EHL contact is now greatly increased. Therefore, one is
now capable of reproducing the displacement response, as in Fig. 5, through a nonlinear spring and a viscous damping
model. For that, a modified Runge–Kutta integrator of second and third orders was used to integrate the motion equation
of the spring and damper model. Fig. 10 shows the fitted values of displacement to the mutual approach obtained from the
EHL dynamic algorithm.

Having achieved an adequate fitting method for the EHL dynamic contact system, further investigations are possible.
Previous methods, as presented in Wijnant [9] and Wijnant and Wensing [11], had a better linear approximation; however
its fitting procedures were made upon the harmonic results, as pointed out before, and presented, then, a greater
complexity. To confirm the non-linearity of the EHL contact, the harmonic response was also evaluated using the least-
squares fitting procedure.
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One of the first hypotheses made on the harmonic response model was that the suspended mass has low or no effect on
the complete system dynamic. Hence, the inertia term of the motion equation vanishes, making the analysis a quasi-static
procedure. The fact is trustworthy when dealing with low masses and, therefore, high natural frequencies. In this case, one
might say that the exciting frequency is dominant over the free vibrations and the natural frequency does not play a big
role in the contact response.

The results expected from the harmonic quasi-static algorithm, however, should not have different behavior from those
of the free vibration for the same dynamic system, i.e., for the same EHL contact system, the stiffness should have the same
nonlinearity as presented in free vibration, and the damping would also be viscous. For this reason, the same analysis
applied to the free vibration results were made upon the harmonic excitation cases.

Initially, in order to check the proper behavior of the harmonic response, the mutual approach for two different exciting
frequencies, over the same contact case of the free vibration, is shown in Fig. 11. As expected, the mutual approach for the
exciting frequencies Oe=p and Oe=2p have, respectively, the periods 2.0 and 1.0 approximately. Also the wave propagation
phenomena can be seen on the results.

Fig. 12 shows the pseudo-interferometry fringes for T=0.0, T=0.5 and T=1.0. Therefore, the harmonic excitation
algorithm also returned fine results and could be used on the fitting procedures.

The linear fitting method was then applied to the harmonic results. Differently from the free vibration model, where the
motion equation is also evaluated along with the EHL algorithm, the velocity of the contact system must be integrated from
the mutual approach as no equation of motion exists for this case. As seen before, there is no need of great modifications on
the fitting methods to employ it in the fitting procedure of the harmonic results. Consequently, there is no increase in the
complexity of the method. The linear coefficients, so as the residuals from the fitting procedure are listed in Table 4.

Further references made to the EHL contact and loading cases will use the same numbers as given in Tables 1 and 4.
Even having a smaller residual, the amplitude deviation is still present for these cases. In the harmonic fitting, there is no
Fig. 11. Harmonic mutual approach response for EHL elliptic contact with M=200 and L=10 for two different exciting frequencies, Oe=p (– –) and Oe=2p (—).

Fig. 12. Pseudo-interferometry fringes for the EHL contact of Fig. 8 with Oe=2p, for T=0.0, 1.0 and 2.0.

Table 4
Fitted coefficient values for three different excitation frequency cases.

Case M L k Oe K1 C1 ef

4 200 10 0.5 p 1.1511 0.02521 8.8713E-04

5 200 10 0.5 2p 1.1540 0.01381 9.1113E-04

6 200 10 0.5 4p 1.1519 0.01247 9.3445E-04
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meaning of using acceleration residuals, as there was no acceleration calculation from the algorithm itself. Therefore, the
analysis only regards the force residuals. Fig. 13 presents the fitted data and the simulated EHL dynamic force.

In order to avoid the same fitting deviations, as in the free vibration cases, the non-linear method was also employed.
Using the same third order polynomial fit for the stiffness and the viscous damping, new coefficients were obtained, now
for the harmonic responses. Table 5 lists these new coefficients.

Even without a closer resemblance between the free vibration results and even between the results from cases 4–6, the
fitting procedure achieved good correspondence, as shown in Fig. 14. Also, Fig. 15 presents the integrated mutual approach
from the nonlinear model compared to the simulated results. The fitting results clearly show the increased precision of the
method, when compared with the linear one.

However, regarding the fitted coefficients, one might conclude that for the same contact system, i.e., the same M, L and
k, the harmonic and free vibration gave different results. Furthermore, for the harmonic responses, the method herein has
a low consistency. Even though, the authors draw the reader attention to the nature of the fitting procedure itself.

Using third order polynomials to represent the stiffness curves, through a least-square method, can produce some
variation of the results. The least square method only provides the best fitted polynomial to the evaluated interval;
therefore, several polynomials can describe the stiffness behavior of the EHL contact in this region, but differ in results
outside the range. It can be observed in Fig. 16, where the graphic shows the polynomial fitted over the evaluated range of
H0 and outside the region.

The predicted values for the spring force around 1 are similar for all three polynomials. Therefore, the three polynomials
can be used to predict the mutual approach for the EHL contact described before, as its values would not diverge much
Fig. 13. Simulated (—) and fitted results (�) for the EHL dynamic force, fd, using the linear dynamic model for case 5.

Table 5
Fitted non-linear coefficients values and fitting residuals for three different excitation frequency cases, where M=200, L=10 and k=0.5.

Case Oe K1 K2 K3 C1 ef

4 p 0.703 0.596 �0.097 0.015 4.17E-09

5 2p 0.603 0.815 �0.215 0.013 2.31E-09

6 4p 0.413 1.236 �0.444 0.011 �9.93E-10

Fig. 14. Simulated (—) and fitted results (�) for the EHL dynamic force, fd, using the non-linear dynamic model for (a) case 4 and (b) case 5.



Fig. 15. Simulated (—) and fitted results (�) for the EHL contact mutual approach using the non-linear dynamic model for (a) case 4 and (b) case 5.

Fig. 16. Stiffness polynomials for case 4 (– � –), case 5(– –) and case 6(—).

Fig. 17. Mutual approach for the non-linear dynamic models of case 4 (– � –), case 5(– –) and case 6(—).
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from one to another. Using these polynomials, the nonlinear dynamic system can be modeled for one specific case. Fig. 17
shows the mutual approach simulated for the EHL contact (M=200, L=10 and k=0.5), with an exciting frequency of Oe=p.

The same analysis can be made for the free vibration cases 1, 2 and 3. Fig. 18 shows the three dynamic models of
Table 3, for a system with On=2.56. As it can be seen, even with some difference in the polynomials coefficients, all
dynamic systems have almost the same behavior over the simulated mutual approach range and they can satisfactorily
represent the EHL contact.

Once verified the nonlinear model for the free vibration and harmonic loading cases, one might use its results to an EHL
contact with different loading condition and expect the same level of correlation. Having the results from the validation of
the algorithm, which depicted the contact response to a ramp loading, the fitting procedure is also applicable. Fig. 19 shows



Fig. 18. Mutual approach for the non-linear dynamic models of case 3 (– � –), case 2(– –) and case 1(—).

Fig. 19. Simulated (—) and fitted results (�) for the (a) EHL dynamic force, fd, and (b) mutual approach, H0, for the validation model results.

Table 6
Fitted coefficients from the nonlinear model for the algorithm response of the experimental validation case.

Case On K1 K2 K3 C1

Validation 2.4 0.8674 0.3823 �0.0185 0.033
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the fitted results for contact force and mutual approach compared to the simulated validation case. Also the adjusted
coefficients are listed in Table 6. The obtained correlation shows to be rather consistent between fitted and simulated data.

Any inconsistence of the nonlinear contact stiffness model should be noticeable, once the increase in load is transient
and uncertainties of the practice results become much clearer. That is, the increase in load was not modeled as a stepwise
increase in the actual load, which complies with a much simpler approach. In this case, all the transient effects of the
contact are present in the response and the fitting method was able to represent them.

5. Conclusion

The proposed non-linear dynamic model for EHL contacts has shown to be feasible and of simple implementation. The
achieved results revealed a good cohesion to the simulated model. Previous approaches, as the linear ones, still have
application in this field; however, as presented here, the non-linear model is considerably a most precise one. Even for the
results obtained for the experimental data, the nonlinear model still covers all peculiarities of the EHL contact.

Having the EHL transient responses, it is easily possible to verify the conditions for the non-linear dynamic model, and
apply the results on the system, making the EHL contact a flexible linkage between the contact parts. The model suggested
here is applicable to any lubricated contact or dynamic system with one degree of freedom and can be expanded for higher
order systems.

However, further investigation on the actual behavior of each dynamic system is required. The validity of the results for
the EHL contact are supported by previous experimental results obtained in this specific matter. However, little is the
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knowledge from its dynamic characterization. The use of the results presented here in mechanical components, such as
rolling elements bearings, regarded as a full system, is straightforward and can be a suitable validation method.
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